学术报告
Rogue wave patterns associated with Adler–Moser polynomials featuring multiple roots in the nonlinear Schrödinger equation
题目:Rogue wave patterns associated with Adler–Moser polynomials featuring multiple roots in the nonlinear Schrödinger equation
报告人:凌黎明教授(华南理工大学)
摘 要:In this talk, we analyze the asymptotic behaviors of high-order rogue wave solutions with multiple large parameters and discover novel rogue wave patterns, including claw-like, OTR-type, TTR-type, semi-modified TTR-type, and their modified patterns. A correlation is established between these rogue wave patterns and the root structures of the Adler–Moser polynomials with multiple roots. These structures are related to the root structures of special Adler–Moser polynomials with new free parameters, such as the Yablonskii–Vorob’ev polynomial hierarchy, among others. By modified the expansion, we take a step for the open question proposed by Yang and Yang recently.
报告人简介:凌黎明,华南理工大学数学学院教授,博士生导师,国家自然科学基金优青项目获得者。长期从事非线性可积系统的研究,在本领域发表 SCI 论文 60余篇,已发表文章在 Google 学术搜索统计引用四千余次,4篇论文入选ESI高被引论文。先后主持国家自然科学基金项目 4 项。目前任杂志 Physica D 编辑。
报告时间:2024年11月17日(周日)下午17:15-18:15
报告地点:教二楼727
联系人:李春霞