学术报告

Lotka–Volterra competition-diffusion system: the critical competition case

题目:Lotka–Volterra competition-diffusion system: the critical competition case

报告人萧冬远博士 日本东京大学    

摘要:In this talk,we consider the reaction-diffusion competition system in the so called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly   supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.  

报告人简介: 萧冬远, 2019年博士毕业于日本东京大学数学系,博士导师为国际著名偏微分方程和动力系统专家Hiroshi Matano教授。2019年-至今先后在日本明治大学、法国蒙彼利埃大学和日本东京大学从事博士后研究工作,目前为日本东京大学的JSPS外国人特别研究员。长期从事生态应用扩散模型解的定性研究,代表性研究成果发表在Proc. London Math. Soc.、J. Math. Pures Appl.、 Ann. Inst. Henri Poincare (C) Anal. Non Lineaire、Comm. in Partial Differential Equations等高水平期刊上。

报告时间:2024年10月15日(周二)上午10:00-11:00

报告地点:教二楼727

联系人:吴雅萍